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A generalized Fisher's equation, which models chemically reacting
fiuid flow and for which there is an anafytic solution for a one-dimen-
sional premixed flame, is solved numerically using three particle-in-cell
(PIC) methods and a finite-difference method that is second-order
accurate in space. Two of the PIC methods introduce new particle—grid
interpolation schemes that use mass matrix formulations. Through
comparisons with the analytic solution and through truncation error
analyses, it is shown that the two new interpolation schemes are
superior to the standard PIC method and are as accurate as the finite-
difference method when the fluid velocity is comparable to the flame
velacity, All three PIC methods give superior results when the fluid
velacity is greater than the flame velocity. Solving chemical rate equa-
tions on the grid instead of on each particle yields significant increases
in computational efficiency with no significant increases in numerical
error. @ 1993 Academic Press, Inc

L. INTRODUCTION

In modeling chemically reacting flow, there is a need to
maintain positive concentrations of chemical species and to
minimize numerical diffusion that is not easily satisfied by
standard numerical algorithms. In recent studies of trace
chemical transport by tropospheric circulation, it is argued
by some that particle-in-cell (PIC) methods meet these
needs best [1, 27.

In PIC methods [3-6] for numerical fluid dynamics,
all or part of the dynamical state of a fluid is stored as
properties carried by Lagrangian computational particles,
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and a computational grid is used to help update particle
properties. Generally, a three-stage calculation is used to
update the particle properties in time. First, the particle
properties are interpolated onto the computational grid.
Second, the flow field on the grid is advanced in time. Third,
the advanced-time flow field on the grid is interpolated back
to the particles. The method used to interpolate between the
particles and grid can have a significant effect on the
accuracy of the calculation. Earlier PIC methods tended to
assign to particles the properties of the fluid at the particles’
locations on the grid [37]. Recently the numerical diffusion
inherent in this earlier prescription has been reduced in
the FLIP method [5], in which the changes in the fluid
properties on the grid are interpolated to the particles in the
third stage of the calculation.

Another particle method that has been proposed for
chemically reacting flows is the discrete vortex method
[7-9]. This is a grid-free method in which each Lagrangian
particle carries with it an amount of vorticity and may
undergo a random walk to simulate the effects of viscosity.
More recently the method has been extended so that each
particle carries gradients in temperature and composition
[9]. The velocity at each particle’s location is obtained
using the Biot-Savart law, and since the vorticity of each
particie affects the velocity of every other particle’s [ocation,
computational times increase faster than linearly with the
number of particles. In contrast, in PIC methods each
particle only directly affects properties at grid points near
the particle through the first stage interpolation, and since
the number of particles used is proportional to the number
of grid points, computational times only increase in
proportion to the number of grid points.

The grid is used in PIC methods to calculate interactions
between particles. Thus one cannot hope to obtain better

0021-9991/93 $5.00

Copyright © 1993 by Academic Press, Inc.
All righis of reproduction in any form reserved.



38 O’ROURKE, BRACKBILL, AND LARROUTUROQU

than grid-scale resoiution of physical effects involving fluid
element interactions calculated on the grid. Typically, one
uses the grid to obtain a velocity field that is used to move
the particles [5], or to equilibrate the particle velocities
[4], and a pressure field that is used to accelerate the
particles. Nevertheless, there are two advantages of PIC
methods over purely grid-based methods that have led to a
recent resurgence in interest in PIC caiculations of fluid flow
[6]. First, for a given velocity field on the grid the calcula-
tion of convection in PIC methods is very accurate because
of the Lagrangian nature of PIC methods. Second, because
there are many more particles than computational grid
cells, PIC methods offer the promise of subgrid scale resolu-
tion of those fluid processes or properties that are not
updated on the grid. For example, by endowing each
particle with a material type that does not change with
time, one can sometimes follow material interfaces quite
accurately. The ability to track material interfaces was
probably the major motivation for the original development
of the PIC method {3].

An extension of the idea of interface tracking with par-
ticles is to endow to each particle a chemical compasition
and solve chemical rate equations for each particle in a
fashion that is largely independent of the grid. One can hope
thereby to obtain subgrid scale resolution of chemical pro-
cesses. For example, with this approach, Walton et al. seek
to minimize perturbations to chemical equilibrium caused
by advection [1]. The original motivation for this work was
to exploit this idea in flame calculations. We first solved a
simple model equation for a premixed laminar flame using
an adaptation of the FLIP method. Surprisingly, we found
that even though we solved the chemical source term for
each particle, the computed flame speed was less accurate
than the flame speed obtained with a commonly used
second-order finite difference technique on the same grid
used in the particle calculation, The reason for this paradox
was eventually found to be partly due to truncation errors
in the particle-grid interpolation scheme. Two alternative
particle—grid interpolation schemes were tested, and these
gave more accurate results than the FLIP method scheme.
The truncation error analysis also showed that numerical
accuracy was not gained by integrating the chemistry
on the particles, a fact that was verified in calculations,
Thus although we do have some important conclusions
concerning the solution of chemical rate equations in PIC
methods, a second contribution of this work is that we have
devised two new, more accurate methods for interpolating
between particles and the grid in PIC method calculations.

In what follows we first present the model flame problem
that is to be solved numericaily. The model problem, which
has an analytic solution, is a generalized Fisher’s equation
[10]. Some properties of this solution are first discussed
because they will help later in interpreting the computa-
tional resulits.

We next describe the particle methods used for solving
the model problem. A single PIC method is used in conjunc-
tion with three different ways for interpolating between the
particles and grid. One interpolation method, which we call
Method I, is that used in the FLIP method [5]. Method 1
is explicit and globally conserves interpolated quantities,
but gives rise to a finite difference approximation on the grid
that is not locally conservative. The other two interpolation
methods are new and are called MethodsII and HI
In Method 11 local conservation is obtained by solving
implicitly a mass matrix problem for the changes in fluid
properties on the grid. Method II gives rise to a standard
finite difference approximation for advancing fluid proper-
ties an the grid. Method [II requires the implicit solution of
two mass matrix problems for each computationai cycle
and gives rise to a standard finite element approximation
for advancing grid properties. The computational results
obtained with these particle methods are to be compared
with those of a standard finite difference scheme, which is
next described.

We then give the computational results. Steady-state
flame speeds are calculated while varying the grid resolu-
tion, number of particles, the interpolation method, and the
method for approximating the chemical source term. The
accuracy of the methods is first assessed by comparing the
computed flame speeds with the exact solution. It is found
that the two new interpolation schemes give more accurate
flame speeds than Method |, but that the grid-based method
gives more accurate flame speeds than all the particle
methods for the steady-state problems. Surprisingly, the
errors in all the PIC methods are somewhat reduced when
the chemical reaction terms are calculated on the grid,
instead of on the particles.

Calculations of the model flame in a moving frame of
reference show that with all the PIC methods the computed
flame speed is independent of frame of reference, but that
with the grid-based method the flame speed changes with
the frame of reference because of truncation errors
associated with calculating convection on the grid. The
reason that the grid-based method does so well relative to
the particle methods on the above steady flow problem is
that the flame is not moving relative to the mesh, and
therefore truncation errors associated with differencing
the convective terms on the grid are small. The Galilean
invariance of PIC method calculations is a property that is
highly desirable in numerical calculations of flow fields with
moving flame fronts, such as occur in internal combustion
engines and other unsteady combustors.

The resuits of a truncation error analysis of the particle
methods are then presented. The analysis shows why there
is no accuracy advantage in PIC methods to calculating
chemical sources on the particles rather than on the grid.
This is because the averaging errors incurred by calculating
chemistry on the grid are generally no larger than temporal
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truncation errors associated with integrating the chemical
source terms. The analysis also shows that the two new
interpolation schemes have comparable truncation errors,
and that both have smaller truncation errors than
Method 1. Although neither of the two new schemes is to be
preferred on the basis of truncation errors, Method 1T is
more efficient computationally because it requires only one
matrix inversion per computational cycle and is therefore
recommended for use in PIC calculations.

I. MODEL PROBLEM

For the model flame problem a single transport equation
is to be solved for function ¥(x, ¢), which can be thought of
as the mass fraction of products of chemical reaction or as
the dimensionless temperature:

Yi+o(r) Y. =vY, + g(Y) (1)
The boundary conditions are Y{—oo,f)=00 and
Y(+o0, 1) =1.0. The quantity v is the fluid velocity, which
depends only on time, v is a constant diffusivity, and the
reaction rate g is given by
g Yi=eclm+1){(1-Y™) Y7+, (2)
Parameter m plays the role of an activation energy. As we
show below, for large m the chemical reaction is confined to
a narrow zone in which ¥ is nearly equal to 1.0, where the
temperature is nearly the flame temperature. When m=1,
Eq. (1) is Fisher’s equation [10].

The advantage of using Eq. (2) for the reaction rate,
rather than a more realistic Arrhenius rate [11], is that
exact traveling wave solutions to Eq. (1) are obtained [107],

Y= )}m=(1+€_m5)_l'fm, (3)

where

172
e={} - o-u

and the flame propagates relative to the fluid with speed
u,= (ve)'”. Just as in more realistic flame models [11], the
flame speed is proportional to the square root of the dif-
fusivity times the reaction rate, and the flame thickness is
proportional to the square root of the diffusivity divided by
the reaction rate. This shows ways in which numerical
errors can influence computed flame speeds. For example,
numerical diffusion augments physical diffusion and can
significantly increase computed flame speeds. Numerical
errors in approximating the reaction rate can also lead to
errors in computed flame speeds.

Another useful relation can be obtained from Eq. (1) by
setting v = u,and integrating from x = —oo to x = +co:

uﬁjm 2(Y(x)) dx. (4)

This is used to evaluate the flame speed in some of the
numerical calculations.

It will also be heipful in interpreting the numerical results
to know something of the structure of the steady-state solu-
tion to Eq. (1) in the limit of large activation energy . Just
as in models with Arrhenius reaction rates [11], the flame
can be divided into two zones in the limit of large activation
energy—one, called the preheat zone, in which there is a
balance of convection and diffusion terms, and another,
called the reaction zone, in which there is a balance of
diffusion and reaction terms. First, from (3) one obtains

. <, 0
lim 7,,(8)= {"’1 éjo}

By direct substitution into Eq. (1), one can show for fixed
& <0 and m large enough, the reaction term is negligible.
Second, by substituting (3) into (2) one obtains

(3)

e™(m+1)

¥ )=c¥,———
g( m) c m (l+em§)2

(6)

Thus the reaction rate g=0{m) when £=0(1/m) and
vanishes exponentially outside this region. By writing the
diffusion term using stretched variable n=m¢, one can
show

. . 1 —me"
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Thus when m » 1 the diffusion and reaction terms nearly
balance and the convection term is negligible in a thin
reaction zone, where n = O(1).

In Fig. 1 are plotted the convection, diffusion, and reac-
tion terms for the steady solution of Eq. (1) when m=8.0
and ¢=v=1.0. The negative of the convection term is
plotted so that the sum of the three terms is always zero. The
convection term is thus always negative, the reaction term is
always positive, and the diffusion term is at first positive and
then negative. We make two observations concerning the
plots in Fig. 1. First, in addition to the preheat and reaction
zones, there is always a very narrow region in which the
diffusion term is small and there is a convective-reactive
balance. Second, the reaction zone thickness is of order 1/m
with a proportionality constant between 4 and 6. -

I, NUMERICAL FORMULATIONS

In this section we give the numerical methods that are
used to solve Eq.(1). A single PIC method is used in
conjunction with three different methods for interpolating
between the particles and the grid. We first describe the PIC
method, give the methods that are used in conjunction with
PIC for calculating chemistry on the particles and on the
grid, and tell how the flame speeds and fluid velocities are
calculated. Then we give the three particle—grid interpola-
tion schemes and discuss some of their properties. Finally,
we briefly describe the grid-based method with which the
PIC schemes are compared.

A. The PIC Method

All the methods in this paper use an Fulerian computa-
tional grid with uniform cell size dx and uniform timestep d+.
Because of the thinness of the reaction zone, computational
efficiency could have been improved by using an adaptive
mesh. Computational times were so small, however, that
using an adaptive mesh was deemed an unnecessary
embellishment. The PIC method uses computational
particles with uniform spacing dx,, at all times. This could be
done because the fMuid velocity v in our example problem
was always constant in space. Each particle has location
x,(t) and reaction product fraction Y,(¢). The quantities x;,
and Y7 denote the position and reaction product fraction of
particle p at time r = n 1.

Before giving the finite difference approximations we
introduce functions that are used to interpolate between
the particles and the grid. Let S{x) be an even function
satisfying

, 1, i=0,
S(”Sx)z{o i;éo}

S(x}=0,

(8a)

(8b)

and,

Y S(x—idx)=1, —00 < X < 00, {8&)

In this paper we use the linear interpolation function

-

Six)= dx
0, |xi > dx,

Ixj < dx,

but other choices are possible [12, 13]. For brevity we
write S}, = S§(x}, —idx). The quantity S7, can be thought
of as the fraction of some property of particle p that is
interpolated to grid point / at time t = n dr.

A three-stage computational cycle 1s used in the PIC
method to update the particie product fractions in time.
First, we interpolate the particle product fractions to the
grid to obtain ¥, the value of Y at spatial location i §x and
time # 61. Details of this first stage are given later.

Second, we calculate diffusion explicitly on the grid using
the standard second-order accurate difference approxima-
tion:

8Y, Yr , =2YT4Yn
=y .

ot 5x° ®2)

Equation (9a) can be written in a slightiy different way that
will be used later. Defining the number of particles N”
associated with grid point / by

Ni=X S, (10)
r

and noting that N7 =0x/dx, when dx, divides dx evenly,
which is true in our calculations, we obtain the alternate
form of Eq. (9a):

L0Y, Yi, . —2Yr+ Y7,

NP i .
St Y dx 8x, (9b)

Finally, we interpolate the grid changes back to the
particles and integrate the chemical source term:
Y:+l_ Y;=(5Yp)grid+(5yp)chem' (11)
The change (3Y,),,q in Y, interpolated from the grid will be
given later. The approximation to (8Y,) e is Obtained by
operator splitting and solving the chemical rate equation

— = g(Y).

2 (12)
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Equation {12) can be integrated by parts to obtain
H(Y,+ (0Y ) enem) = explem(m + 1) 6t 1 H(Y7), (13)

where

H(Y)=

r" ex( L
—y» P\ Ty )

The chemical source is then, in a sense, found exactly by
solving (13) implicitly for (8Y ,)cpem- Use of Eq. (13), rather
than an imphcit difference approximation to (12}, 15 more
time-consuming computationally, but has the advantage
that it eliminates a temporal truncation error that would
otherwise obscure the interpolation errors that concern us
here.

Low order implicit difference formulas are usually used
when approximating chemical source terms in computa-
tions of reactive flow because of their robustness and the
fact that exact integrals of chemical rate equations are rarely
available, In preliminary calculations for this study we used
a first-order implicit approximation t0 (6Y,) sem 2nd found
that this resulted in errors in the computed flame speed that
were comparable to errors associated with particle-grid
interpolation. These temporal truncation errors will still be
present, and may be the largest errors, in PIC calculations
of realistic reactive flows.

Equation (13} is used when chemistry is calculated on the
particles. When chemistry is calculated on the grid, another
term N7{(8Y }opem 15 added to the right-hand side of (9b),
where (3Y,)uem is obtained by using Y7 in place of ¥ in
{13). Then both the diffusion and chemical changes are
contained in (¥, )giq, and (8 Y, )oper is zero.

The velocity v is specified in one of two ways. In calcula-
tions in which the flame is in a moving frame of reference,
v is a prescribed constant. These will be referred to as
unsteady calculations. In calculations in the frame of
reference of the flame, the velocity o is calculated so that the
total amount of reaction product in the mesh is maintained
at a constant value [[14]. These will be referred to as steady-
state calculations because the steady flame solution is then
obtained as the long-time limit of a transient calculation.
The procedure for determining v(t) in steady-state calcula-
tions will now be described. The computational region
extends from x=0 to x=L, where L is the length of the
computational mesh. After the three-stage calculation
described above, the total amount of reaction product in the
mesh has increased because of chemical reaction. (It will be
shown later that the diffusion calculation conserves the total
amount of reaction product.) Thus there is an x, < £ such
that

rRY(x)dleu, (15)

0

where Y{x) s the product distribution determined from the
particles:

#

Y(x)=§ Yr+iy {i_—xﬂ}

c)xp
1, lpl<t (e
#e)= {0, 1) =4,

and /; is the amount of reaction product initially in the
mesh. We choose v"*! in order to flux enough product out
of the mesh to maintain the total amount of product equal
to I, Since particles enter the upstream boundary with
Y,=0, as required by the boundary condition given after
Eq. (1),

L—xg-
6t

vn+1__,:

{17}

After determining v"*!

by

, the particle positions are updated

a4+l __ n nil
X=Xyt ot

(18)

B. The Interpolation Schemes

We now describe the interpolation methods used in the
first and third stages of the PIC calculations. Method I is
the explicit scheme that is used by the FLIP method [6]. In
stage one the grid values are determined by

N:: Y:r — Z Sr! Yn

e’ p?
]

(19)

where N7 are given by Eq. (10). In stage three the particle
changes are obtained by

(‘5Yp}grid=Z.S:",p5Yn (20)

where the 8 ¥, are given by (9b).

It is interesting to derive the finite difference approxima-
tion that results from Method I for updating the grid values
Y. For simplicity we neglect convection, so that N;and S, ,
are constant in time. We deduce from (19),

NYII=YS, et
P
from (11},

NI'Y7+1 =ES§‘p{Y:+(5Yp)grid+ (5Yp)chem}s
P
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and finally from (19) and (20},

NFI =N Y4 Y {ZS""’SJ'P} el
J P

+ Z Si, p(‘S Yp)chem'

?

Defining N,

ijs
z S‘ pipe
and denoting the right-hand side of (9b) by R;, we obtain

y”+1-— Y? 25 80, )ctem

Nt 2 ”R+ L (22)

The symmetric matrix N, ; will be called the mass matrix
because in the limit of a continuous particle distribution

i
lim N,,dx, —j S(x—i6x)S(x—jox)dx. (23)
0

Bxp, =0

The integral in (23) is similar to the mass matrix in Galerkin
finite element methods [15]. In PIC fluid dynamics
calculations, this mass matrix has the form

p

Mivj::z m,S; 3
¢

where m,, is the fluid mass associated with particle p, and
thus M ; has the units of mass. (The reformulation of the
FLIP equatlons using a mass matrix is discussed in Burgess
et al. [167.) In the calculations of this paper we are taking
m,=1, so that M, =N, ;. For later refcrence we note
that in the limit of a continuous distribution, our linear
interpolation functions give

g s
Sx 3 t=}
6iim(]Ni’j(s_):: é: |I_J| =1 (24)
7 0, li—ji>1

From Eq. (21) we sce that the spatial difference operator
used to update Y,is an average of the R, at surrounding grid
points, Because of this, the spatial difference approximation
is globally, but not locally, conservative. It is globally
conservative because in the absence of chemistry

LN

nat L

Yi ‘Y?_ Ni.j _
S =L L RSTR

(25)

and the R; sum to zero because cach is the difierence of

fluxes R,=f;. 12— f;—1p. To have conservation cell-by-
cell, however, we need

Yr_z+1 _ Y{i
N~ =5
T

where f; ;= — f;,. The spatial approximation in (22) does
not have this property because, in general, N, R;/N, is
unequal to ~ N, R,/N,.

The motivation for interpolation method I is to obtain
the standard difference approximation to the diffusion term
in the equation for Y, and, thereby, make the difference
approximation locally conservative. To accomplish this we
replace the stage-three interpolation of Eq. (20} by

(6Y gnd_ZS” (5Y) (26}

where

ZN,-N,-(c‘iYJ-)’=N,-5Yi. (27)

The stage-one interpolation of Method IT remains the same
as in Method I; that is, the Y7 are given by Eq. (19). Using
similar reasoning to that of Eq.(21) we deduce that
Method 11 gives rise to the following difference approxima-
tion for Y7:

Y?+1 - anz R+ {Zp Sr’,p{éyp)chem}

N.
ot

5 (28)

Note that Method Il requires the implicit solution of
Eq. (27) for the (8Y,)" at each timestep. In the calculations
of this paper a direct tridiagonal matrix solver is used, but
in multidimensional PIC calculations an iterative procedure
is used [16].

The motivation for interpolation method 11I is to obtain
the finite element approximation to (1}, in which the mass
matrix multiplies the approximation to d¥/dr [15]. To
accomplish this, we replace the stage-one interpolation of
Eq. {19) with

LNGY=2 S0, (29)

The stage-three interpolation remains the same as in
Method 11; that is, the (6Y,),.q are given by Eqs. (26) and
(27). From (9b), (11), (26), (27), and {29) one can show
that

Yn+1 Y”" 2 5. (5};}
p i p p/chem
ZN”—J—L& R+{——5! } (30)

i
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Because of (27) and (29), Method 111 requires the solution
of two implicit equations for each computational timestep.

A summary of the equations used in stages one and three
to interpolate between the particles and grid are given in
Table 1.

C. The Grid-Based Method

The PIC method calculations will be compared with
caiculations using the following finite difference approxima-
tion to Eq. (1):

n4 1 n ’ '
Y;‘ —Yi+vn Yr'+1/2_Yr'—l,"2

&t ox
Y{’+1_2Y{1+Y{:l (6Yr')chem
p i 1 i 1
Y dx? + T (30)
where
1 u" &t
Y:'+1/2=‘2'l:YT+Y?+1+ e {Y?_Y;!+1}]'

The approximation te the convection term is Leith’s
method [17], which is second-order accurate in space and
time. We use the standard explicit diffusion approximation,
which is second-order accurate in space, and the
approximation to the reaction rate that is used by the PIC
methods when the chemical source term is integrated on the
grid. At the upstream boundary we specify ¥, 2 =00, and at
the downstream boundary upwind differencing is used, so
that Yy, 1= Yy,, where N/ is the number of grid points.

In unsteady calculations the velocity is a specified con-
stant. When the steady-state flame solution is desired, the
velocity v” for the grid-based method is chosen so that the
total amount of reaction product in the mesh approaches
a prescribed value 1, {cf. Eqs. (15)-(18) for the particle

method},
21n +1_ IO _Jn
vl =t 0 (32)
St Ynt
where
NI
I"=éx Y v
i=1
TABLEI
Stage one Stage three
Method [ {19) (20)
Method I (19) (26) and (27)
Method IT1 (29) (26) and (27)

We note that Yy, is in the post-flame region and is very
nearly equal to unity. Equation (32} is derived in the
following manner. By summing (31) over all grid points,
muitiplying by éx, and using the boundary values of ¥’, we
obtain

ITI+]_1H

0T, =S

chem >

(33)

where S, is the integrated chemical source. Thus to make
I"*2=1,, we need to take v"*' so that

]0 _ [n+ 1
ot

A+lyn+l _ o+l
+u YN.r '*Schem‘

(34)

Equation (32) is obtained by assuming that §,,__ and Y NI
are independent of time and by subtracting (33) from (34).

IV. RESULTS

Calculations were performed to compare the relative
accuracy of interpolation Methods I I, and III and the
grid-based method for the steady-state and unsteady
problems, while integrating the chemical source term on the
particles and on the grid. Fixed parameters in the caicula-
tions were reaction rate coefficient ¢ — 1.0, diffusivity v = 1.0,
activation energy m =80, length of the computational
region L =100, and §1/6x* = i, This small timestep was
used because for the grid difference approximation Eq. (30)
associated with Method III, the stability criterion was
61/6x* < §. Because c=v=1.0 the exact solution for the
flame speed is unity, and the flame thickness is also
approximately one. Thus the computational region spanned
approximately 10 flame thicknesses, enough so that com-
putational boundaries could be far removed from regions of
steep gradients and chemical reaction. In calculations of the
steady flame solution, the initial conditions were

er—x0, X <X,

¥{x, 0)={I (35)

L x;x(},

where x, = 7. The value of {5, the integral used to determine
the velocity v in steady flow calculations, was just the
integral of this initial distribution:

L
Iy= fo ¥(x, 0) dx.

Varying x, between six and eight made no difference to the
computational results. Calculations of the steady flame were
all integrated to a time = 5.0, which is approximately five
fluid residence times in the flame. The fluid residence time is
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FIG. 2. Flow velocity versus time for the steady flame calculation
using Method I1, Jx=0.125, and dx, = 0.25 * dx.

the longest characteristic time associated with this flame
problem (see Section I1), and thus we expect the computed
solution to be approximately steady after several residence
times. At time ¢ = 3.0 the steady flame speed was determined
in a manner described below.

Three groups of calculations were performed. The
purpose of the first group of calculations was to assess the
relative accuracies of the particle and grid-based methods in
the steady flame problem. We computed steady flame solu-
tions using Methods 1, I, and 111 and integrated the chemi-
cal source term on the particles. The computational cell size
dx was taken to be 0.25, 0.125, and 0.0625, and for each
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FIG. 3. Flow velocity of Fig. 1 between times 1= 1.0 and ¢ = 5.0 using
Method II, dx=0.125, and §x, =025 » dx.

value of dx, three values of éx, were used: 0.25 8x, 0.125 dx,
and 0.0625 dx. These particle calculations were compared
with calculations using the grid-based method and the same
three values of dx.

The purpose of the second group of calculations was to
determine if numerical accuracy was improved by inte-
grating the chemical source terms on the particles, rather
than on the grid. We computed steady flame solutions using
Methods I, I1, and III and integrated the chemical source
term on the particles and on the grid. The computational
cell sizes were (.25 and 0.125.

Finaily, we performed several unsteady flow calculations

099775 —.b—

0.99770 4
0.99765
0.59760

0.99755

flow velocity

Trr T Ty

45 5 55

FIG. 4. Fiow velocity versus time for the conditions of Fig. 1 with (a) dx,=0.125 » dx and (b} dx, = 0.0625 = dx, showing the effects of varying

particle spacing.
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to assess the relative accuracies of the particle and grid-
based methods on probiems in which the flame was moving
relative to the grid. The chemical source term was integrated
on the particles and the cell size dx was 0.125. The iniet
velocity was taken to be 5.0, 10.0, and 20.0, with the initial
conditions taken to be the steady flow solution. The
computed flame speed was evaluated by approximating the
integral in Eg. {4) with the total chemical source on the
particles:

éx
ufzgr—p'z (5Yp)chefn' {36)
p
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o
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FIG. 5. Flow velocity versus time for the steady flame PIC calculations showing the effects of varying grid spacing and interpolation method:
{a) Method I with dx =0.25; (b) Method 11 with dx = 0.0625; (¢} Method I with dx =0.125; and (d) Method IIT with dx = 0.125.
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We first give the computational results and postpone the
interpretation and discussion of the results until the next
section. Figure 2 shows a typical piot of flow velocity versus
time for a steady flow calculation with particles. This is for
the case using interpolation Method IT with x =0.125 and
6x,=0.25» dx. The velocity appears to attain a steady
value—the computed flame velocity—within a time of 1.0
Two types of small amplitude, high frequency fluctuations
are revealed, however, by plotting the same data, as in
Fig. 3, with a greatly enlarged vertical scale. Further, when
averaged over the high frequencies, the flow velocity
continues to change slowly on a much longer time scale.
Thus a truly steady solution is never reached, and the
flame speeds we report later are obtained by assuming an
exponential approach of the computed flow velocity v(¢) to
its steady value. After filtering out the high frequency fluc-
tuations, we used the computed flow velocities at times 3.0,
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4.0, and 5.0 to determine the three parameters u,, a, and ¢,
in the equation

!

)

The highest frequency corresponds to the particle injec-
tion frequency, v/dx,. Increasing the number of particles, as
in Fig. 4, reduces the amplitude of these fluctuations, but
does not significantly change the flame speed. The next
higher frequency is approximately the mesh frequency v/dx.
These oscillations are strongly damped with increasing grid
resolution, as shown in Fig, 5. The high [requency oscilla-
tions are similar in nature for Methods I, 11, and T1I.

Table I1 shows the errors in computed flame speeds for
the first group of calculations modeling the steady flame
problem. The results are independent of éx,. The most

u(t)=uf|:1—acxp( (37)
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FIG. 6. Flame speed versus time for the unsteady flow calculations using particle Methods I, 11, and III (resp. a, b, and ¢) with flow velocity equal

to 20.0.
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TABLE III
Mesh spacing
dx =025 dx=0.125
Method I —0.0233 —0,0052
Method 11 —0.0139 —0.0023
Method II —0.0048 0.0005

surprising result of these calculations is that the particle
methods are less accurate than the grid-based method. With
the exception of éx=0.25, for a given grid cell size the
largest errors were associated with Method 1 and the

flame speed

smallest with the grid-based method. When dx=10.25
Method II was most accurate. Except at the largest cell size,
the errors of Methods IT and ITI were similar in magnitude
and about twice the size of the errors of the grid-based
method. All methods showed close to a factor of four
decrease in error in reducing dx from 0.125 to 0.0625, which
is what one would expect if they were second-order accurate
in space. In reducing éx from 0.25 to (.125, however,
relative error reduction varied considerably. Resuits using
the mesh spacing dx = (.25 were exceptional in this and sub-
sequent groups of caiculations, This might be due to the fact
that marginal resolution of the flame is provided by
ox =0.25, since the reaction zone thickness is of order 1/m.
In fact, we attempted calculations with x = 0.5, identical to
the above calculations in all other respects, but the com-

flame speed

5 52 54 56 58 6
time

Name speed

— T T

5 52

time

FIG. 7. Flame speeds of Fig. 6 plotted using a greatly expanded vertical scale.

581/109/1-4
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puted value of v dropped to zero, indicating a failure to
calculate a sustained burn,

Another surprising resuit is seen in Table {II, which gives
the errors in computed flame speeds in the second group of
calculations, in which the chemistry terms were integrated
on the grid. Comparing Tables I1 and 11T shows that in
every case the flame speed was calculated more accurately
when the chemistry terms were integrated on the grid. Again
Method I was least accurate, but now Method 111 was most
accurate, more accurate than the grid-based method.
Computing the chemical source term on the grid did have
one deleterious effect on the solutions. In this second group
of calculations the particle oscillations in the computed
flame speed were significantly increased. For example, when
Method I1 was used with dx=0.125 and dx,=0.125  dx,
the particle oscillation amplitudes were about 5 = 10~* with
chemistry on the grid and only 1 * 107 with chemistry on

" flame speed

the particles. To reduce these particle oscillations to com-
parable levels to those in the steady flame problem we used
80 particies per cell in the second group of calcuiations. We
point out that this did not result in exorbitant computer
times because the chemistry was being integrated on the
grid.

The third group of calculations, in which the flame moved
relative to the mesh, showed an expected major advantage
of all the particle methods over the grid-based method.
Once again the results were independent of dx,. In the
particle method calculations, the computed flame speed was
nearly Galilean invariant, but in the grid-based method
calculations the flame speed changed with changing frame
of reference. The computed flame speeds versus time are
shown plotted in Figs. 6-8. In each case, these unsteady
calculations were initialized with the computed steady solu-
tion at time f= 5.0 and continued to time = 6.0. Figure 6
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FIG. 8. Flame speed versus time for the unsteady flow calculations using the grid-based method and flow velocities equal to 50, 10.0, and 200

(resp. a, b, and ¢).
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shows plots of flame speed for the three particle methods
when the flow velocity was 20.0, and Fig. 7 shows the same
plots with greatly expanded vertical scales. In each case fluc-
tuations in the flame speed were less than 7.0 x 10 - despite
the fact that the flame translated over about 150 computa-
tional cells during the calculations. Note that at time ¢ = 5.0,
the computed flame speeds, which used Eq. (36), agree
with the steady values reported in Table II, which were
computed using Eq. (17).

Figure 8 shows the computed flame speeds in the grid-
based method calculations when the flow velocities were 5.0,
10.0, and 20.0. Here the changes in computed flame speeds
were proportional to the flow velocity and were about 0.07
when the flow velocity was 200, two orders of magnitude
larger than in the particle methods.

V. INTERPRETATION OF RESULTS

Truncation error analyses [18] were performed for the
grid-based and particle methods. The derivation for
the grid-based method 15 straightforward. Outlines of
the derivations for the particle methods are given in
Appendix A, and here we give only the finai results:

Particle Methods-Chemistry on Particles.

dg

61
Yr+UYt:VYr.x+g""?l:vaxxx'i'zdY

d’s 5
Yxx + &F Y;il

+ v 6xz [}_C YxxX)f + (xj+ L X)(x- xr) Yxxx.\‘]’

6 28x?
(38)
where x, < x<x,_, and
1, Method 1
k= 0, Method 11
—1, Method 111
Grid-based Method.
ot dg g .,
Y, +vY,=v¥ +g—v 5 [vaxn-f-Z-Er Y’”‘+dY2 Yx]

.1
ox° | =¥
+v X []2 XXX}C]

dg o2l
+v {5! l:vY‘“x—i_dY Y,]—r)x 5 Yxxx}. {39)

Particle Methods-Chemistry on Grid,

dg d’g
Y, oY, =vY, +g—vdt [vaxxx+2ﬁ YHJ'-F Yf]
k (x; —x)(x-—x-)]
2 i+ I i
- Y
v ox [6+ 20%°
(x;y = XHx —X;)
2
+0x l: 2o ¢
1 d, m
55 Yﬂﬁ,fga], (40)
where
G= d—z‘g- y? +£ Y
Tldy? T < T4y T
x,-gxsth
1, Method 1
k= 0, Method 11
—1, Method HI1
and

_ {0, Method I
~ 11, Methods II, III.

To perform the truncation error analyses for the particle
methods, we assumed for simplicity a continuous particle
distribution, in which case Eq. (24) pertains, and expanded
the particle solution in a Taylor series on the grid. Only
the lowest order truncation errors in space and time were
retained, and for all the methods these were second order
in space and first order in time. Since 81~ dx* in our
calculations, it is clear why second-order convergence of the
computed flame speed was obtained.

It is difficult to relate these truncation errors exactly to
errors in the computed flame speeds w, We can obtain
equations for the computed u, of each method by inte-
grating the steady forms of (38}-{40) and using the
boundary conditions imposed on Y. These equations give u,
to lowest order in terms of integrals of truncation errors
evaluated using the exact solution and in terms of

I=Jg‘%s{x) dx,

where z(x) is the difference between the computed and exact
solutions. A difficulty is that the computed flame speed is an
integrated quantity. This means that not only can trunca-
tion errors cancel each other locally, but the effects of a
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truncation error on u,can be offset by the effects of another
truncation error at a different place in the mesh. At best we
can use the truncation error analyses to give plausible
explanations of how errors in u, have varied. We can also
use the analyses as a guide in selecting methods for more
general reactive flow problems. This is what we now
proceed to do.

We first point out two major differences between the
truncation errors of the particle methods and those of the
grid-based method. First, in the second-order spatial errors
the coefficient of dx° ¥ .. in the grid-based method is {5 and
in the particle methods k/6 + (x,, , — x)}{(x — x,)/(26x?}. In
the grid-based method this error arises from the difference
approximation to the diffusion term. In the particle methods
this source of error is still present but is modified by the
particle-grid interpolation, and an additional term is added
that depends on a particle’s position relative to the grid
points. For the particle methods the average value of the
coefficient is /6 + 1/12, which gives a plausible explanation
for why the calculated flame speeds of Method I (k=1) are
less accurate than those of MethodsI1 (A=0) and III
(k= —1). It does not explain why the grid-based method
always does better than the particle methods on the steady
flow problem. Perhaps there are compensating errors in the
grid-based method.

The second major difference between the truncation errors
of the grid-based and particle methods, is the presence of
errors proportional to the fluid velocity v in Eq. (39) that
are not present in Eqgs. {38) and {40). These terms arise from
the differencing of the convection term and are almost
certainly responsible for the grid-based method performing
worse than the particle methods in the unsteady problems.
To see this we compare the magnitudes of the errors propor-

tional to Y,,.... which occur in both methods, and vY

which occur in just the grid-based method. In the flame’s
preheat zone, which has thickness of order unity, V., ~ !
and vY ., = v, and thus the latter term will only dominate
the former when v > 1. In the reaction zone, which has
thickness of order 1/m, where m=38, ¥ _ . ~m® and
vY ...~ vm® The latter term will only become significant
when vam. Thus the convective truncation errors are
comparable to or smaller than other errors in the steady
flow problems, but in the unsteady flow problems they
dominate in the preheat zone.

We also point out an important difference between the
particle methods with chemistry integrated on the particles
and on the grid. The truncation errors of Eq. (40) contain as
a subset all those of Eq. (38) and several more second-order
spatial errors that arise due to the averaging of Y and of
g{Y) that occur when interpolating between the particles
and the grid. Since 6¢ = v 6x*/12 in our calculations, it can
be seen that these averaging errors are comparable in
magnitude to the d¢ errors arising from not time-centering
the difference approximations to the diffusion and reaction

terms. It is probable that some cancellation occurred
between these averaging errors and the ¢ errors, and this
explains the surprising result that the flame speed was more
accurately calculated when the chemistry was integrated on
the grid.

In fact, the averaging errors will usually be comparable to
or smaller than the ¢ errors in numerical calculations of
combustion because we usually have

~ 2
v 613 8x°,

since implicit approximations are used for the diffusion
term [19]. Since the &¢ errors are difficult to avoid in
integrating stiff chemical rate equations, integrating
chemical sources on the grid is preferable to integrating
them on particles because accuracy is not degraded but
computational efficiency is improved.

V1. CONCLUSIONS

Particle-in-cell (PIC) calculations of a model flame
problem have shown that while there are advantages to
calculating convective transport using particles there is no
advantage to integrating chemical source terms on the
particles in flame problems. This is because the averaging
errors that are eliminated by integrating the chemistry on
the particles are comparable to, or smaller than, temporal
truncation errors arising from the diffusion and reaction
terms. This conclusion may not be true for atmospheric
chemistry problems. When, for example, physical diffusion
is small and chemical source terms are accurately integrated
in time, the averaging errors incurred by integrating
chemistry on the grid may be the dominant numerical trun-
cation errars, and clearly then it would be advantageous to
calculate chemistry on the particles.

Two new schemes have been devised that reduce spatial
truncation errors that arise because of the particle-grid
interpolation in PIC methods. These schemes involve
implicit solution of mass matrix problems on the grid and
thus are more costly than the original FLIP interpolation
scheme, but our experience in two dimensions has been that
a 30 % increase in cost yields the same increase in accuracy
as a calculation with four times as many grid cells [16].

In flame calculations in which flow velocities are
comparable to flame velocities, particle methods achieve
comparable accuracy to second-order grid-based method if
one of the two new schemes for particle—grid interpolation
is used. However, PIC methods achieve comparable
accuracy at greater cost than grid methods because of
greater storage and time requirements,

In flame calculations in which flow velocities are
significantly greater than flame velocities, as they often are
when using general purpose hydrodynamics codes for
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combustion calculations, PIC methos offer the possibility
of significant increases in computational accuracy because
they eliminate truncation errors that are dominant when
flow velocities are large.

In the future application of particle methods to the
calculations of combustion, several issues need to be
addressed. There needs to be a careful comparison of the
computational efficiency of particle methods relative to
other methods. Are positivity, low numerical diffusion, and
the ability to resolve contact discontinuities worth the extra
cost of PIC in a particular problem? There also is a need
for a way to extend the range of densities that can be
represented by the particles. In real flame problems, unlike
our model flame problem, the fluid density usuaily decreases
by a factor of five to eight across the flame [11], and. the
Lagrangian particles may not provide adequate resolution
in the low density post-flame gases without a methoed to add
new particles. Nevertheless, our results indicate that the
accuracy of PIC methods equals, and sometimes far exceeds
that of grid-based methods, and that further development
work on PIC combustion models is well justified.

APPENDIX A: TRUNCATION ERROR ANALYSIS

For the particle methods in the limit of a continuous dis-
tribution of particles, the equations solved are the following:
MeTtHOD [

Step 1. Y,=(8:(x) Y"(x) dx/ox
Step2. 8Y,=(vt/ox?)[Y,\; —2Y + ¥, 1+, chem

Step3. Y Ux)=TY"(x)+ X 8:{x) 0¥+ 6 Y (X)ihem-
MEeTHOD I1.
Step 1. Same as Method 1

Step2. 30Y, +1(6Y,_ +0Y,.) = (vO&x )Yy, —
2Y1+ Yi-1)+(5Yr'.chem°

Step 3. Same as Method 1.

METHOD 1I1.

Stepl. 3Y,+ (Y, + Y. ) =1 S:(x) Y"(x) dx/dx
Steps 2 and 3. Same as Method I1

When chemistry is added on the particles, 6Y; . =0,
and

Lt

Y (Xenem= | &(¥"(x, N d, (A1)

"

where 6Y"/9r=g(Y")and Y"(x, t")= Y"(x}.

When chemistry is calculated on the grid, § ¥(x) o0, =0
and

sl
o= ¥, (A2)

where dY! /dt=g(¥/}and Y/ (:")=7,.

We now outline the truncation error analysis of the above
equations and give some intermediate results that can be
used to verify the analysis. First, we expand Y"(x} in a
power series about x=x, and substitute this into the
integral in Step 1 to obtain Y, in terms of Y" and iis
derivatives at x,. For Methods I and II we obtain

Yi: [Y+ %Yxx (SJCZ + 3_é6Y.rx.vx 5.‘(4 + - ],r:x; (A3a)

and for Method I11,
Y=Y =55 Y 05° + 555 Ve 0x* + - 1. (A3b)
In deriving these, use is made of
0, n odd
f SA¥)x—xy de=4 2(6x)"*! e

(m+1)n+2)

Next, the expansions for Y,,, and ¥,_, are written in
terms of Y and its derivatives at x = x,. Substituting the
results into the Step 2 equations gives

%z Y [ Yotk ‘f;f Yoo+ 0(5;:4)]““ + 51”5%
(A4)
where
1, Method [

k= 0, Method II
-1, Method IIL

The chemical source term on the grid is treated as follows.
The integrand in the defining Eq. (A2) is expanded in a
power scries in time, the time integration is performed, and
then Egs. (A3a) and (A3b) are used to obtain g(Y,) in terms
of g and its derivatives at x = x,. The result is

9L chem _ &1y 52405
St [g+dY12 we OXTF ng}’]x:xr (Ada)

for Methods I and 11, and

3Y: chem [ dg 1 3t dg
U2 ichem _ w2l
ot

for Method II1.
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Before using Eq. (A4) in the equation for Step 3, we must
first expand the right-hand side of (A4) about an arbitrary
point x that may not coincide with the grid point x,. After
doing this and substituting the result in the Step 3 equation,
we obtain for the case where chemistry is integrated on the
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grid
Yn+1(x)__ Yn(x)
at
=v¥.+g
ko (xpi—x)x—x,)
2 ™ + 1 i
+vox Y’”‘“[6+ o2
or'de o dg
24y =" 2%y
(x; 1~ x)x—x,)
2 P
+dx |: T2
where
dg .., dg
= —=Y
G {de sty e
and

{0, Method 1
m=q

and when chemistry is integrated on the particles,

Yn+ 1(x)__ Yn(x)
ot

=VYxx+g

ko (X —x)x~x,)

, Methods 11 and I1I,

6] G,  (A6a)

d. zYxrxx -+
+ v ox ’ [6

o de
2°dY’

Finally, the right-hand sides of (A6a) and (A6b) are

expanded about time 7" to obtain

Y ix)— Y"(x)_hDY_'_gDzY

8t "~ Dt

28x?

2 D#?

-,

where the material derivative is used because differentiation
is along a particle path, The second-order time derivative is
found in terms of the spatial derivatives by differentiating
(A6a) and (A6b) with respect to time and substituting

DY
i Yxt+
Dt VIeyTE&

in the resulting equations [18].
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